Distributed Training: A Gentle Introduction

Stephen Balaban, Lambda
Computation Happens:
- On one GPU

Gradient transfers:
- N/A

Model transfers:
- N/A

Examples:
- TensorFlow
- PyTorch
- Caffe / Caffe 2
- MXNet
- etc.

Problems:
- Small batch size => noisier stochastic approximation of the gradient => lower learning rate => slower training.
Multi GPU Training (CPU Parameter Server)

Computation Happens:
- On all GPUs and CPU

Gradient transfers:
- From GPU to CPU (reduce)

Model transfers:
- From CPU to GPU (broadcast)

Examples:
- TensorFlow w/ Graph Replication AKA Parameter Server AKA “Towers”
- PyTorch
- Caffe

Problems:
- Not good for low arithmetic intensity models.
- Performance highly dependent on PCIe topology.
Multi GPU Training (Multi GPU all-reduce)

Computation Happens:
- On all GPUs

Gradient transfers:
- GPU to GPU during NCCL all-reduce

Model transfers:
- GPU to GPU during NCCL all-reduce

Examples:
- TensorFlow + NCCL
- PyTorch + NCCL

Problems:
- Not good for high arithmetic intensity models.
- Performance highly dependent on PCIe topology.
Asynchronous Distributed SGD

Computation Happens:
- On all workers and parameter servers

Gradient transfers:
- Worker to parameter server (asynchronously)

Model transfers:
- Parameter server to worker (asynchronously)

Examples:
- Hogwild!
- Async SGD is AKA Downpour SGD

Problems:
- Stale gradients.
- Code that is difficult to write and maintain.
- Difficult to reason about order of operations.
Synchronous Distributed SGD

Computation Happens:
- On all workers and parameter servers

Gradient transfers:
- Worker to parameter server

Model transfers:
- Parameter server to worker

Examples:
- TensorFlow Distributed
- Torch.distributed

Problems:
- Needs lots of worker to parameter server bandwidth.
- Requires extra code and hardware for parameter server.
Multiple Parameter Servers

Computation Happens:
- On all workers and parameter servers

Gradient transfers:
- Worker gradient shards to parameter servers

Model transfers:
- Parameter server model shards to workers

Examples:
- TensorFlow Distributed
- Paddle Paddle

Problems:
- Need to tune ratio of parameter servers to workers.
- Again, even more complicated and difficult to maintain code.
Ring all-reduce Distributed Training

Computation Happens:
- On all workers

Gradient transfers:
- Worker transfers gradient to peers during all-reduce

Model transfers:
- Model “update” happens at the end of multi-node all-reduce operation

Examples:
- Horovod\(^1\)
- tensorflow-allreduce

\(^1\)Horovod uses NCCL 2.0's implementation of multi-node all-reduce.
Parameter Servers vs Multi-node Ring all-reduce

Parameter Servers
- Good for compute intensive workloads. (High arithmetic intensity.)
- High node-to-parameter server communication.

Multi-node Ring all-reduce
- Good for communication intensive workloads. (Low arithmetic intensity.)
- High node-to-node communication.
GPU RDMA over InfiniBand

Data pathway with RDMA
(Directly out the door via PCIe switch)

Data pathway without RDMA
(Additional copy to CPU memory)
Four InfiniBand NICs are placed alongside the NVLink fabric underneath a PCIe switch. They are used for GPU RDMA during the distributed all-reduce operation.
Each GPU has six NVLink connections which allows for four non-overlapping pathways to be drawn through all eight GPUs on the system and out an InfiniBand card, optimizing both GPU to GPU and node to node communication during distributed all-reduce. (See Sylvain Jeaugey’s “NCCL 2.0” presentation for more information.)
The GPU RDMA (Remote Direct Memory Access) capabilities of the InfiniBand cards and the V100 GPUs allows for an inter-node memory bandwidth of 42 GB/s. 84% of the 50 GB/s theoretical peak allowed by the four cards. $50 \text{ GB/s} = 4 \text{ cards} \times 100 \text{ Gb/s} / (8 \text{ bits/byte})$
Citations

- Sergeev, Alexander and Mike Del Balso. **Horovod: fast and easy distributed deep learning in TensorFlow.**

- Jeaugey, Sylvain. **NCCL 2.0.** (2017).

 Additional thanks to Chuan Li and Steve Clarkson.
Lambda Customers

[Logos of various companies and institutions]

lambdalabs.com | (650) 479-5530
About Me

- CEO of Lambda.
- Started using CNNs for face recognition in 2012.
- First employee at Perceptio. We developed image recognition CNNs that ran locally on the iPhone. Acquired by Apple in 2015.
- Published in SPIE and NeurIPS.
Lambda

enterprise@lambdalabs.com

https://lambdalabs.com